Comprehending
Comprehensions

Reuven M. Lerner, PhD
reuven@lerner.co.ll

Transformation

* You often want to turn one iterable into another
e For example, you might want to turn the list
(0,1,2,3,4]

e Into the list

[0,1,4,9,16]

 We can transform the first list into the other by
applying a Python function.

2

Each list
item

def square(x):

return x*x

New list
item

The usual solution

>>>> input = range(5)
>>>> def square(x):

return xxx

>>> output = []
>>> for x in input:

output .append(square(x))

>>> output

[0, 1, 4, 9, 16]

What's wrong with this®

« Nothing is wrong.
* But functional programming looks at this, and says:
* Why create a new variable ("output")?
« Why are you building it, one step at a time”
« Why are you modifying the state of "output'?

 Why do it in such a clumsy way?

5

T'he elegant way

e '| want to apply my function, square, to each and
every element of the input list, and get a list back.”

Input list

def square(x):
return x*x

Output list

LISt comprehensions

* |In Python, we do this with a "list comprehension”:
[square(x) for x in range(5)]
e Orif you prefer:

[xxx for x in range(5)]

LISt comprehensions

* This expresses what we previously said:

e | want a new list.

 This new list should have the same number of
elements as the input list.

e Each element of the new list should be the result
of applying square(x) to each element.

Many, many uses

* List comprehensions are powerful because they
expression this idea in a compact, elegant form

* (Andyes, it's a bit hard to read. | admit it!)
* Any time you have an iterable, and want to do

something with each element, you likely want to
use a list comprehension.

10

INts to strings

* | can't say

' '.join(range(5))

e pecause str.join’'s input must contain strings.
e Solution:

' '.join([str(x) for x in range(5)])

11

| owercase all words

e | can transform a sentence into all lowercase:

words = 'This is a sentence for my Python
class'.split()

[word.lower() for word in words]
 Oreven:

'.join([word.lower() for word in words])

12

Filenames to files

* | can get a list of filenames from os.listdir:
os.listdir('/etc')

e | can get a file object for each of these:
[open('/etc/' + filename)

for filename in os.listdir('/etc')]

13

File contents

e It | want to get the names of users on my Unix
system, | can say

[line.split(":")[0Q]

for line in open('/etc/passwd') |

14

Pig Latin!

def plword(word):
vowels = 'aeiou'
if word[@] in vowels:
return word + 'way'

else:

return word[1:] + word[Q] + 'ay

15

Translation

' '.join([plword(word)

for word in open('column-215"')])

16

L Ist of dicts

* If | have a list of dicts ("people), each of which looks
like:

pl = {'first_name':'Reuven',
'last_name':'Lerner', 'phone':'054-496-8405"}

e | can get each person's full name as follows:

[person['first_name']+' '+person|'last_name']
for person in people |

17

Comprehensions

* Once you start to use list comprehensions, you'll
see opportunities for this kind of transformation, or
‘'mapping,” just about everywhere.

* Python uses iterables in a lot of places, which
means that you have many, many opportunities to
do this

e |t's often worth turning your data into an iterable, so
that you can put it inside of a list comprehension!

18

Creating sets

 We can create sets by passing set() an iterable
e SO we can create a set with:
set([xxx for x in range(5)])

* In modern versions of Python, we can also say:

{xxx for x in range(5)}

e Curly braces give us a set — a set comprehension

19

Set comprehensions

« Create a set, based on any iterable
e |ots of uses:

 Usernames

* Filenames

« Anything you get that's non-unique, which you want
to make unique, is a perfect candidate!

20

Dict comprehensions

* Why let sets have all of the fun?

e Use curly braces, just like a set comprehension —
but then separate the two values with a colon (:),
just like in a dictionary definition.

{ line.split(':")[@] : line.split(':')[2]
for line in open('/etc/passwd')

if line[@] = '#' }

21

Dict comprehensions

* |f a key appears more than once, the dict removes
all but the first

e You need to have the

22

You can...

>>> query_string = 'a=1&b=2&c=xyz"'
>>> [item.split('=")
for item in query_string.split('&")]

[[ta', "1'], ['b", '2"], ['c', 'abc']]

>>> dict([item.split('=")
for item in query_string.split('&"')])
{Ial: l,lll lbl: |2|, ICI: IXyZI}

23

... but even better

>>> query_string = 'a=1&b=2&c=xyz’
>>> { item.split('=")[@] : item.split('=")[1]
for item in query_string.split('&') }

{lal: lil/ |b|: |2|, lcl: 'XyZ'}

24

Filtering

* By default, a comprehension returns a collection
with the same number of elements as its input.

e However, we can add an "if" statement to the end,
which filters the output.

* Only those items for which the expression returns
True" will be output

25

Filtering

* | can say:
[xxx for x in range(10) if x%2]
e That allows

[1, 9, 25, 49, 81]

26

Loops vs. comprenensions

* Many people ask me why they should use list
comprehensions, when we already have "for" loops.

* The answer: These are completely different things!

27

Who cares?

 Comprehensions let you create lists, dictionaries,
and sets quickly and easily.

* Moreover, they let you map the values from one
collection to another

* |Indeed, comprehensions are the modern

incarnations of two very old functions, "'map" and
"filter”

28

I/mmutable data

We know that Python has both mutable and
Immutable data structures

In functional programming, we pretend that our
data structures are immutable, even if they aren't

But if we want to enforce immutable data, we can
do it — typically using tuples

29

Dictionary comprenhensions

e Just like a list comprehension, but with curly braces
and name:value as the output

{ word:word.lower() for word in 'ABC DEF GHI'.split() }

{ "ABC': 'abc', 'DEF': 'def', 'GHI': 'ghi'}

30

Set comprehensions

e Set comprehensions!

{ word.lower() for word in 'ABC DEF GHI'.split() }

set(['abc', 'ghi', 'def'])

31

Nested list
comprehensions

e Atypical example:

[(x,y) for x in range(5) for y in range(5)]

* Huh?!?

32

More readable

[(x,y)

for x in range(5)

for y in range(5)]

33

More sophistication

[(x,y)

for x in range(5)

for y in range(x+1)]

(Game scores

{"Reuven':[300, 250, 350, 400],
'Atara’': [200, 300, 450, 150],
'Shikma':[250, 380, 420, 120],
'‘Amotz':[100, 120, 150, 180]

}

def average(scores):

return sum(scores) / len(scores)

35

Get all game scores

>>> [score
for score_list in s.values()

for score in score_list]

(300, 250, 350, 400, 100, 120, 150, 180,
200, 300, 450, 150, 250, 380, 420, 120]

36

Average score
across all people

>>> average(|[one_score
for one_player_scores in scores.values()

for one_score in one_player_scores |)

37

Average score
across all people
(but ignoring <200)

>>> [one_score
for one_player_scores in scores.values()
for one_score 1n one_player_scores

if one_score > 200]

(300, 250, 350, 400, 300, 450, 250, 380, 420]

38

Rooms

rooms = [|

{'age': 14, 'hobby': 'horses', 'name': 'A'},
{'age': 12, 'hobby': 'piano', 'name': 'B'},
{'age': 9, 'hobby': 'chess', 'name': 'C'}],
[{'age': 15, 'hobby': 'programming', 'name': 'D'},
{'age': 17, 'hobby': 'driving', 'name': 'E'}],
[{'age': 45, 'hobby': 'writing', 'name': 'F'},
{'age': 43, 'hobby': 'chess', 'name': 'G'}]]

39

Names of guests

>>> | person|'name']
for room in rooms

for person in room |

40

Chess players’ names

>>> [person|'name']
for room in rooms
for person in room

if person['hobby'] == 'chess']

41

