
Comprehending
Comprehensions

Reuven M. Lerner, PhD
reuven@lerner.co.il

 1

Transformation
• You often want to turn one iterable into another

• For example, you might want to turn the list

[0,1,2,3,4]

• into the list

[0,1,4,9,16]

• We can transform the first list into the other by
applying a Python function.

 2

 3

def square(x):
 return x*x

Each list
item

New list
item

The usual solution
>>>> input = range(5)

>>>> def square(x):

 return x*x

>>> output = []

>>> for x in input:

 output.append(square(x))

>>> output

[0, 1, 4, 9, 16]

 4

What's wrong with this?
• Nothing is wrong.

• But functional programming looks at this, and says:

• Why create a new variable ("output")?

• Why are you building it, one step at a time?

• Why are you modifying the state of "output"?

• Why do it in such a clumsy way?

 5

The elegant way

• "I want to apply my function, square, to each and
every element of the input list, and get a list back.”

 6

 7

def square(x):
 return x*x

Input list

Output list

List comprehensions

• In Python, we do this with a "list comprehension":

[square(x) for x in range(5)]

• Or if you prefer:

[x*x for x in range(5)]

 8

List comprehensions
• This expresses what we previously said:

• I want a new list.

• This new list should have the same number of
elements as the input list.

• Each element of the new list should be the result
of applying square(x) to each element.

 9

Many, many uses

• List comprehensions are powerful because they
expression this idea in a compact, elegant form

• (And yes, it's a bit hard to read. I admit it!)

• Any time you have an iterable, and want to do
something with each element, you likely want to
use a list comprehension.

 10

Ints to strings
• I can't say

', '.join(range(5))

• because str.join's input must contain strings.

• Solution:

', '.join([str(x) for x in range(5)])

 11

Lowercase all words
• I can transform a sentence into all lowercase:

words = 'This is a sentence for my Python
class'.split()

[word.lower() for word in words]

• Or even:

' '.join([word.lower() for word in words])

 12

Filenames to files
• I can get a list of filenames from os.listdir:

os.listdir('/etc')

• I can get a file object for each of these:

[open('/etc/' + filename)

 for filename in os.listdir('/etc')]

 13

File contents

• If I want to get the names of users on my Unix
system, I can say

[line.split(":")[0]

 for line in open('/etc/passwd')]

 14

Pig Latin!
def plword(word):

 vowels = 'aeiou'

 if word[0] in vowels:

 return word + 'way'

 else:

 return word[1:] + word[0] + 'ay'

 15

Translation

' '.join([plword(word)

 for word in open('column-215')])

 16

List of dicts
• If I have a list of dicts ("people), each of which looks

like:

p1 = {'first_name':'Reuven',
'last_name':'Lerner', 'phone':'054-496-8405'}

• I can get each person's full name as follows:

[person['first_name']+' '+person['last_name']

 for person in people]

 17

Comprehensions
• Once you start to use list comprehensions, you'll

see opportunities for this kind of transformation, or
"mapping," just about everywhere.

• Python uses iterables in a lot of places, which
means that you have many, many opportunities to
do this

• It's often worth turning your data into an iterable, so
that you can put it inside of a list comprehension!

 18

Creating sets
• We can create sets by passing set() an iterable

• So we can create a set with:

set([x*x for x in range(5)])

• In modern versions of Python, we can also say:

{x*x for x in range(5)}

• Curly braces give us a set — a set comprehension

 19

Set comprehensions
• Create a set, based on any iterable

• Lots of uses:

• Usernames

• Filenames

• Anything you get that's non-unique, which you want
to make unique, is a perfect candidate!

 20

Dict comprehensions
• Why let sets have all of the fun?

• Use curly braces, just like a set comprehension —
but then separate the two values with a colon (:),
just like in a dictionary definition.

{ line.split(':')[0] : line.split(':')[2]

 for line in open('/etc/passwd')

 if line[0] != '#' }

 21

Dict comprehensions

• If a key appears more than once, the dict removes
all but the first

• You need to have the

 22

You can…
>>> query_string = 'a=1&b=2&c=xyz'

>>> [item.split('=')

 for item in query_string.split('&')]

[['a', '1'], ['b', '2'], ['c', 'abc']]

>>> dict([item.split('=')

 for item in query_string.split('&')])

{'a': '1', 'b': '2', 'c': 'xyz'}

 23

… but even better

>>> query_string = 'a=1&b=2&c=xyz'

>>> { item.split('=')[0] : item.split('=')[1]

 for item in query_string.split('&') }

{'a': '1', 'b': '2', 'c': 'xyz'}

 24

Filtering

• By default, a comprehension returns a collection
with the same number of elements as its input.

• However, we can add an "if" statement to the end,
which filters the output.

• Only those items for which the expression returns
True" will be output

 25

Filtering

• I can say:

[x*x for x in range(10) if x%2]

• That allows

[1, 9, 25, 49, 81]

 26

Loops vs. comprehensions

• Many people ask me why they should use list
comprehensions, when we already have "for" loops.

• The answer: These are completely different things!

 27

Who cares?
• Comprehensions let you create lists, dictionaries,

and sets quickly and easily.

• Moreover, they let you map the values from one
collection to another

• Indeed, comprehensions are the modern
incarnations of two very old functions, "map" and
"filter"

 28

Immutable data

• We know that Python has both mutable and
immutable data structures

• In functional programming, we pretend that our
data structures are immutable, even if they aren't

• But if we want to enforce immutable data, we can
do it — typically using tuples

 29

Dictionary comprehensions

• Just like a list comprehension, but with curly braces
and name:value as the output

{ word:word.lower() for word in 'ABC DEF GHI'.split() }

{ 'ABC': 'abc', 'DEF': 'def', 'GHI': 'ghi'}

 30

Set comprehensions

• Set comprehensions!

{ word.lower() for word in 'ABC DEF GHI'.split() }

 set(['abc', 'ghi', 'def'])

 31

Nested list
comprehensions

• A typical example:

[(x,y) for x in range(5) for y in range(5)]

• Huh?!?

 32

More readable

[(x,y)

 for x in range(5)

 for y in range(5)]

 33

More sophistication

[(x,y)

 for x in range(5)

 for y in range(x+1)]

 34

Game scores
{'Reuven':[300, 250, 350, 400],

 'Atara':[200, 300, 450, 150],

 'Shikma':[250, 380, 420, 120],

 'Amotz':[100, 120, 150, 180]

}

def average(scores):

 return sum(scores) / len(scores)

 35

Get all game scores
>>> [score

 for score_list in s.values()

 for score in score_list]

[300, 250, 350, 400, 100, 120, 150, 180,
200, 300, 450, 150, 250, 380, 420, 120]

 36

Average score
across all people

>>> average([one_score

 for one_player_scores in scores.values()

 for one_score in one_player_scores])

 37

Average score
across all people

(but ignoring <200)
>>> [one_score

 for one_player_scores in scores.values()

 for one_score in one_player_scores

 if one_score > 200]

[300, 250, 350, 400, 300, 450, 250, 380, 420]

 38

Rooms
rooms = [[

 {'age': 14, 'hobby': 'horses', 'name': 'A'},

 {'age': 12, 'hobby': 'piano', 'name': 'B'},

 {'age': 9, 'hobby': 'chess', 'name': 'C'}],

 [{'age': 15, 'hobby': 'programming', 'name': 'D'},

 {'age': 17, 'hobby': 'driving', 'name': 'E'}],

 [{'age': 45, 'hobby': 'writing', 'name': 'F'},

 {'age': 43, 'hobby': 'chess', 'name': 'G'}]]

 39

Names of guests

>>> [person['name']

 for room in rooms

 for person in room]

['A', 'B', 'C', 'D', 'E', 'F', 'G']

 40

Chess players’ names
>>> [person['name']

 for room in rooms

 for person in room

 if person['hobby'] == 'chess']

['C', 'G']

 41

